学术报告
Nonlinear stability for 3-D plane Poiseuille flow in a finite channel-林植林 副教授(华南师范大学)
报告题目: Nonlinear stability for 3-D plane Poiseuille flow in a finite channel
报告人:林植林 副教授(华南师范大学)
Abstract:In this talk, we will introduce the nonlinear stability for the 3-D plane Poiseuille flow $(1-y^2,0,0)$ at high Reynolds number $Re$ in a finite channel with non-slip boundary condition. If the initial velocity $v_0$ satisfies $\|v_0-(1-y^2,0,0)\|_{H^{\frac{5}{2},2}}\leq c_0 Re^{-\frac{7}{4}}$ for some $c_0>0$ independent of Reynolds number, then the solution of 3-D Naiver-Stokes equations is global in time and does not transit away from the plane Poiseuille flow. The transition threshold is accordant with the numerical result by Lundbladh et al. in 1994. This talk is based on joint work with Prof. Qi Chen, Prof. Shijin Ding and Prof. Zhifei Zhang.
报告时间:2023年11月21日9:30-10:30
腾讯会议:#腾讯会议:762-840-752
联系人:牛冬娟